博客
关于我
POJ 3468 A Simple Problem with Integers(线段树+区间更新)
阅读量:324 次
发布时间:2019-03-04

本文共 2602 字,大约阅读时间需要 8 分钟。

You have N integers, A1, A2, … , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, … , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
“C a b c” means adding c to each of Aa, Aa+1, … , Ab. -10000 ≤ c ≤ 10000.
“Q a b” means querying the sum of Aa, Aa+1, … , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
Hint
The sums may exceed the range of 32-bit integers.

终于有点明白pushdown函数是干嘛的了,它更新的方向和pushup相反。

pushup是在回溯的过程中更新此节点的父节点
pushdown是在父结点有更新的时候,先向下更新直接子结点,然后再有其他的操作。
pushdown函数的判断:如果不为0说明这个节点的字节点需要更新,更新完成后,把它标记为已经更新,不需要更新

#include 
#include
#include
using namespace std;typedef long long ll;int n,q;struct node{ int l,r; ll val,lazy; int len; }tree[100005*4];ll arr[100005];void pushup(int cur){ tree[cur].val=tree[cur*2].val+tree[cur*2+1].val;}void pushdown(int cur){ if (tree[cur].lazy!=0){ tree[cur*2].lazy+=tree[cur].lazy; tree[cur*2+1].lazy+=tree[cur].lazy; tree[cur*2].val+=tree[cur*2].len*tree[cur].lazy; tree[cur*2+1].val+=tree[cur*2+1].len*tree[cur].lazy; tree[cur].lazy=0; }}void build(int cur, int l, int r){ int mid=(l+r)/2; tree[cur].l=l, tree[cur].r=r; tree[cur].val=0, tree[cur].len=r-l+1; tree[cur].lazy=0; if (l==r) tree[cur].val=arr[l]; else{ build(cur*2, l, mid); build(cur*2+1, mid+1, r); pushup(cur); }}void update(int cur, int l, int r, int val){ if (l<=tree[cur].l && tree[cur].r<=r){ tree[cur].val+=(tree[cur].r-tree[cur].l+1)*val; tree[cur].lazy+=val; return; } pushdown(cur); int mid=(tree[cur].l+tree[cur].r)/2; if (l<=mid) update(cur*2, l, r, val); if (r>mid) update(cur*2+1, l, r, val); pushup(cur);} ll query(int cur, int ql, int qr){ if (ql<=tree[cur].l && tree[cur].r<=qr) return tree[cur].val; pushdown(cur); ll ans=0; int mid=(tree[cur].l+tree[cur].r)/2; if (ql<=mid) ans+=query(cur*2, ql, qr); if (qr>mid) ans+=query(cur*2+1, ql, qr); return ans; } int main(){ scanf("%d%d", &n, &q); for(int i=1; i<=n; i++) scanf("%lld", &arr[i]); build(1, 1, n); while(q--){ char op[5]; int a,b; scanf("%s%d%d", op, &a, &b); if(op[0]=='C'){ ll c; scanf("%lld", &c); update(1, a, b, c); } else printf("%lld\n",query(1, a, b)); } return 0;}

转载地址:http://kvnh.baihongyu.com/

你可能感兴趣的文章
netty之 定长数据流处理数据粘包问题
查看>>
Netty事件注册机制深入解析
查看>>
netty代理
查看>>
Netty入门使用
查看>>
netty入门,入门代码执行流程,netty主要组件的理解
查看>>
Netty原理分析及实战(一)-同步阻塞模型(BIO)
查看>>
Netty原理分析及实战(三)-高可用服务端搭建
查看>>
Netty原理分析及实战(二)-同步非阻塞模型(NIO)
查看>>
Netty原理分析及实战(四)-客户端与服务端双向通信
查看>>
Netty发送JSON格式字符串数据
查看>>
Netty和Tomcat的区别已经性能对比
查看>>
Netty基础—1.网络编程基础二
查看>>
Netty基础—2.网络编程基础四
查看>>
Netty基础—3.基础网络协议一
查看>>
Netty基础—3.基础网络协议二
查看>>
Netty基础—4.NIO的使用简介一
查看>>
Netty基础—4.NIO的使用简介二
查看>>
Netty基础—5.Netty的使用简介
查看>>
Netty基础—6.Netty实现RPC服务一
查看>>
Netty基础—6.Netty实现RPC服务三
查看>>